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lized upon addition of diethyl ether and cooling. The com­
plex reacts with methyl fluorosulfonate (eq 2) or triethylox-

/r«ns-IW(CO)4(CS)- + CH3SO3F — -

ZrOWS-IW(CO)1(CSCH3) + SO3F" (2) 
onium tetrafluoroborate to give neutral, pentane-soluble 
products. These reactions differ from the reported reaction9 

of IW(CO)5- with Et3O+ in which EtI is produced. The 
product of the methyl fluorosulfonate reaction in CH2CI2 
was isolated in low yield by removing the solvent at reduced 
pressure, extracting the residue with pentane, and crystal­
lizing at —80°. The complex10 is quite air-sensitive in solu­
tion but more stable in the solid state. The HCO) peaks 
occur at relatively high frequencies in the ir spectrum, and 
the thiocarbonyl c(CS) absorption appears (Table I) as a 
sharp peak of medium intensity nearly 80 cm"' lower than 
in the thiocarbonyl anion, 3. The complex exhibits a singlet 
in its NMR spectrum at T 7.40, and an abundant parent ion 
is observed in its mass spectrum. 

Although 3 does not react with acetic anhydride in 
CH2CI2, the reaction does proceed in the presence of BF3 
(eq 3). The neutral S'-acetylthiocarbonylium complex" has 

O O 
Il Il 

Zraws-IW(CO)4(CS)- + CH3COCCH, *• 
O 

/WWS-IW(CO)4CSCCH3 + CH3CO2-BF3" (3) 

v(CO) bands (Table I) at higher frequencies than the meth­
ylated derivative, and the thiocarbonyl v(CS) absorption is 
lowered by more than 110 cm -1 relative to that of 3. The 
splitting seen in the strong v(CO) E band and the appear­
ance of a Bi band suggest that the asymmetric acylthiocar-
bonylium ligand causes some distortion of the local C^ 
symmetry of the complex.12 Only a singlet at r 7.60 is ob­
served in its proton NMR spectrum at room temperature, 
and the acyl carbonyl ;>(CO) absorption is seen as a sharp 
peak at 1753 cm -1. 

Trifluoroacetic anhydride also reacts with 3 to yield a 
similar product (eq 4). When carried out in CH2Cb the ir 

O O 

Zraws-IW(CO)4(CS)- + CF3COCCF3 5=* 
O 

Zraws-IW(CO)4CSCCF3 + CF3CO2" (4) 

spectrum shows complete consumption of the starting com­
plex, but removal of the solvent under reduced pressure also 
removes the trifluoroacetic anhydride, reversing the reac­
tion and leaving mainly 3. When the reaction is carried out 
in pentane, in which the trifluoroacetate salt product is in­
soluble, the solution may be concentrated and cooled to 
—80° to yield yellow crystals. This product is quite unsta­
ble, and the crystals darken even on standing in the mother 
liquor under N2 at -80°. An elemental analysis was not at­
tempted, but the high-resolution mass spectrum supports 
the assigned formula.13 The acyl carbonyl exhibits a single 
band at 1737 cm-1. Although the v{CS) absorption could 
not be located because of the strong C-F absorption, its 
very high-frequency metal carbonyl j/(CO) bands14 show 
that the S'-trifluoroacetylthiocarbonylium ligand is a strong 
electron acceptor. 

Analogous O-alkylcarbonylium and O-acylcarbonylium 
complexes derived from metal carbonyl complexes are un­
known.16 That the reactions of cis-W(CO)(CS)(DPE)2 
with alkylating agents yield only the S-alkylated 
W(CO)(DPE)2(CSR)+ products shows that the sulfur of 
the CS group is more nucleophilic than the oxygen of the 

carbonyl. While the carbonyl groups in CW-W(CO)2(DPEh 
should be somewhat more nucleophilic than the CO in 
W(CO)(CS)(DPE)2 (because of the greater ir acidity of 
CS relative to CO), alkylating agents still do not react with 
a carbonyl oxygen but at the metal instead. 

In metal carbonyl chemistry CO stretching frequencies 
or force constants are useful indicators of the electron den­
sity on the carbonyl oxygen atom.17 The electron density on 
the sulfur of a metal thiocarbonyl complex is apparently in­
fluenced in much the same manner. Our results indicate 
that metal thiocarbonyl complexes with c(CS) absorptions 
below approximately 1200 cm -1 will be reactive toward 
electrophiles such as those described in this and our preced­
ing communication.1 Complexes with i>(CS) frequencies 
above this value have been found not to react. 
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Interaction of Paramagnetic Niobium(IV) Hydrides with 
Olefins. Electron Spin Resonance Studies of Metastable 
Intermediates 

Sir: 

We wish to describe a useful method to probe for tran­
sient species present during the reaction of paramagnetic 
metal complexes with olefins, involving the application of 
careful temperature modulation to electron spin resonance 
(ESR) techniques. Although a variety of catalytic reactions 
of olefins involve transition metal hydrides and alkyls as in­
termediates, due to their transitory existence little is known 
about the actual metal species participating in these reac­
tions.1 We have felt that metastable paramagnetic metal 
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Table I. ESR Parameters of Nb(IV) Species Derived from the Interaction of (C5H5)NbH2 with Isobutylene, Propylene, and Ethylene 

Species0 Structure [proposed] 

>—Hyperfine splitting^ (G)-

AM An 

Linewidthc 

(G) <g)d 

I 
I 
X 
II Be 

B e 

P e 

Ee 

III Be 

Be 

pe 
VP/ 

(C5H5)2NbH2 

(C5H5)2NbD2 

[(CsH5)2Nb] 
[(C5H5)2NbH2(=<)] 
[ (C 5 H s ) 2 NbD 2 «)] 
[(C5H5)2NbH2(=/)] 
[(C5H5)2NbH2(=)] 
[(C5Hs)2NbH(:M] 
[(C5Hs)2NbD(V)] 
[(C5H5)2NbH(» )] 
[(C5H5)2Nb(C3H7)2] 
(C5H5)2Nb(CH3)2 

(C5H5)2Nb(C6H5)2 

[(C5H5)2Nb(0-/-Bu)2] 
(C5H5)2NbCl2 

[(C5H5)2Nb(Cl)H] 

45.9 
45.4 

103 
68.1 
68 
69.2 

- 6 8 
67.2 
67 
69.1 
84 
88.8 
88.8 

127 
116.5 

97.6 

11.7 (t) 
<2 

10.5 (t) 
nr 

10.8 (t) 
- 1 0 (t) 

10.3 (d) 
nr 

11.3(d) 
nr 

6.3 (s) 
nr 

12.8 (d) 

6.0 
7.6 
8.0 
4.0 

22 
5.4 
/ 
6.2 

22 
4.7 

14 
3.7 
9.0 

20.0 
12.0 
11.0 

2.0097 
2.0095 
1.9894 
2.0036 
2.004 
2.004 

/ 
2.001 
2.001 
2.001 
1.997 
1.9984 
1.9982 
1.95 
1.9970 

/ 
a Key: B = isobutylene, P = propylene, and E = ethylene. b Key: t = 1 :2 :1 triplet, d = 1:1 doublet s = binomial septet, nr = not resolved. 

c Peak to peak. <*Corrected to second order using the exact solution to the Bre i t -Rabi equation: +0.0005, ±0.001, or ±0.01. e (C5H5J2 = 
(rj5-Cp)(ri3-Cp)./Footnote 10. 8Footnote 4. h Footnote 5a. 'Footnote 11./Not measured. 

complexes may play important catalytic roles.2 The early 
transition metal complexes such as those derived from tan­
talum and niobium are effective catalysts3 and applicable to 
mechanistic studies by ESR because they have large nucle­
ar magnetic moments and nuclear spin quantum numbers, 
both of which give rise to well-resolved and characteristic 
splitting patterns (e.g., / ( 9 3Nb) = 9/>).4 

The paramagnetic (C 5 Hs) 2 Nb^H 2 species I, generated 
by abstraction of hydrogen from the diamagnetic 
(C 5Hs) 2NbH 3 with /erf-butoxy radical,4 has a half-life of 
at least 10 min in cyclopropane-benzene solutions at —70°. 
The ESR spectrum of I disappears within a few seconds on 
warming the solution to 0° and is replaced by what we be­
lieve is monomeric niobocene X (vide infra),5 showing only 
resolved splitting to a single niobium nucleus. 

Scheme I 

(C5H,).,NbH, (C5H5)NbH2 

I 

(C5H5),Nb (1) 

X 

The same experiment carried out with isobutylene replac­
ing cyclopropane also affords an intense spectrum of I as 
shown in Figure la. However, on raising the temperature of 
this solution (in the absence of irradiation), the spectrum of 
I disappears and is replaced by that of a second species HB 
shown in Figure lb having the same splitting pattern as I 
(i.e., a decet of triplets) but showing markedly different hy­
perfine constants (Table I). On further warming, the spec­
trum of HB gradually disappears, and it is replaced simul­
taneously by that of a third species IUB (decet of doublets 
in Figures lc,d) and finally by the spectrum of X (shown in 
Figure Ie). The triplet splittings in both I and HB and the 
doublet splittings in IIIB are clearly associated with cou­
plings to two and one hydrogens, respectively, which were 
originally bonded to niobium, since no such splittings are 
observed when (05Hs)NbD3 is treated under the same con­
ditions.6 

It must be emphasized that tert-butoxy radical provides 
only the means to generate high concentrations of I, and the 
observation of niobium(IV) species is not dependent on its 
presence. Thus, a thermal reaction between Cp2NbH3 and 
isobutylene themselves induces similar changes shown in 
Figure 2, and the observation has direct bearing on the im­
portance of these paramagnetic species in catalytic reac­
tions. 

Ethylene and propylene react with (C 5Hs) 2NbH 2 signifi­
cantly faster than isobutylene. Thus, the spectra of I and 

TS 
(77"'-Cp)2NbH, + f~ —* (f-CpXf-Cp)NbH, (2) 

I II 
^ a I 

* (f-CpXf-Cp)Nb:^ - , (3) 

II -

1H 
III 

If-Cp)2Nb 

IV 

\ t 

-* (Tf-Cp)̂ Nb 
X 

(al = allyl) 
(4) 

the ethylene adduct HE can only be observed fleetingly at 
less than —100°. Similarly, propylene affords the propylene 
adduct IIP at —70°. The progression of spectral changes 
described above with each olefin (varying in facility), all fi­
nally terminate with the appearance of the spectrum of X. 

The transient nature of the foregoing paramagnetic 
Nb(IV) intermediates preclude their isolation. However, 
the hyperfine splittings and g factors provide a basis for dis­
cussing their identity, and for purposes of stimulating fur­
ther investigation we propose that the facile changes of I, II, 
III, etc. to X are due to coordination of olefin, rearrange­
ment and reductive elimination as outlined in Scheme I.7 

According to this scheme the differences among olefins lie 
in equilibrium 2 s but more importantly in the rates of the 
insertion-rearrangement steps 3 and/or 4. Isobutylene and 
propylene afford species III which we tentatively attribute 
to a hydrido(7r-allyl)niobium(IV) species since it is absent 
with ethylene. The insertion product IV has not yet been 
observed probably due to a rapid reductive elimination.9"11 

The isotropic g factors provide a further basis for the struc­
ture assignment of these paramagnetic niobium(IV) 
species. Thus, the Nb and Ta hydride species in Table I all 
have g factors larger than those of the corresponding dial-
kyl species, roughly in proportion to the number of hydrido 
ligands.12 

The confirmation of the structures presented here would 
require isolation of the intermediates. However, the ESR 
studies show the transitory nature of most of these species, 
and it is doubtful whether they would be isolable in pure 
form. For example, the species we have ascribed to niobo­
cene has been isolated only as a diamagnetic dimer.3 Al­
though the ready dimerization of niobocene and its suscep­
tibility to oxidative addition15 is anticipated, we hope that 
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a. 

(C6H5I2NbH2 

^ \ 

(C5H5I2NbH2 IJ. 

+ 
(C.H.LNb III. 

5 52 ^H _ 

(C5H5I2Nb^ in. 

(C8H^2Nb X. 

Figure 1. ESR spectral changes occurring during the reaction of 
(C5Hj)2NbH2 with isobutylene at (a) -70°, (b) -37°, (c) -10°, (d) 
25°, and (e) on standing. For clarity only selected lines corresponding 
to mi = 1A, \ , and 5/2 of the decet Nb splitting are shown in (b), (c), 
and (d). Sweep widths are the same in all the spectra. Proton NMR 
field markers are in kHz. In (d) and (e) lines marked with open circles 
are due to species X. 

X. (C1H1 I1Nb \ \ I ! ! ! i l l 

IM. ( C 1 M ^ 1 K I ( J i l Ii I l I l ;,' I l I I l 

Figure 2. ESR spectrum obtained during the thermal reaction of 
Cp2NbH3 and isobutylene at 25° in cyclopropane-benzene solution. 
Two species clearly present are IIIb and X, in addition to minor 
amounts of other niobium(lV) species. 

the information obtained from these ESR studies will pro­
vide us with optimum conditions for its eventual isolation, 
either as a crystalline substance or in an inert matrix.16 
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A Synthesis of </,/-Muscone from Cyclododecanone 

Sir: 

We wish to disclose here an efficient synthesis of d,l-
muscone (V) from the readily available cyclododecanone 
(I)." The ring expansion sequence employs consecutive two-
and one-carbon ring homologations and allows the con­
trolled introduction of substituents on the final macrocycle. 
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